Bedienungsanleitung Trübungsmessgerät Manual Turbidity Measuring Unit

STS-03 / 04

Dieselstraße 13 • 48485 Neuenkirchen • Tel. 05973 / 9474-0 • Fax 05973 / 9474-74 E-Mail Zentrale@seli.de • Internet http://www.seli.de

Inhaltsverzeichnis

1	Sicherheits- und Schutzmaßnahmen	1
1.1	Allgemeine Sicherheitshinweise	1
1.2	Bestimmungsgemäße Verwendung	1
1.3	Gefahrenbereiche und Restgefahren	2
1.4	Betriebsmittel	2
1.5	Personal	2
1.6	Entsorgung	3
1./	Symbole und Piktogramme	3
2	Produktbeschreibung	5
2.1	NIR - Sensor STS	5
2.2	Funktionen	6
2.3	Kalibrierung	8
2.4	Prozessintegration	9
3	Lieferung1	1
3.1	Lieferumfang1	.1
3.2	Prüfen der Lieferung1	.1
4	Montage1	3
4.1	Anlage vorbereiten	.3
4.2	Mechanischer Anschluss1	.3
4.3	Elektrischer Anschluss1	.4
5	Parametrierung1	5
5.1	Anwendermenü1	.5
5.2	Ausgangsstrom1	.7
5.3	Schaltpunkte1	.7
5.4	Display1	.9
5.5	Tastatursperre1	.9
5.6	Reset2	20
6	Kalibrierung durch den Anwender 2	1
6.1	Kalibriermenü2	21
6.2	Kalibrierung mit Vergleichslösungen2	22
6.3	Kalibrierung mit Vergleichsgerät2	23
6.4	Auf Werkskalibrierung rückstellen2	25
7	Wartung 2	7

7.1	Wichtige Hinweise zur Wartung	27
7.2	Prozessanschluss kontrollieren	27
7.3	Messfenster reinigen	.28
7.4	Wartungsplan / Lebensdauer der Sendeeinheit (LED)	29
7.5	Entsorgung	29
8	Hilfe im Problemfall	31
8.1	Kein oder fehlerhafter Messwert	31
8.2	Stark schwankender Messwert	31
8.3	Ausgangsstrom passt nicht zum Messwert	32
8.4	Schaltausgang schaltet nicht korrekt	32
8.5	Tastatur lässt sich nicht bedienen	.32
8.6	Fehlermeldung im Display	33
9	Technische Daten	34
9.1	Normen	34
9.2	Spezifikation	34
9.3	Abmessungen	.35
9.4	Umgebungsbedingungen	35
9.5	Prozessbedingungen STS	36
9.6	Bestellstruktur STS 03	37
9.7	Bestellstruktur STS 04	38
10	Ersatzteile und Zubehör	I

Version 01/2019

1 Sicherheits- und Schutzmaßnahmen

1.1 Allgemeine Sicherheitshinweise

Der Sensor STS ist so konstruiert, dass bei Beachtung der Bedienungsanleitung vom Produkt keine Gefahren ausgehen.

- Lesen Sie zuerst die Bedienungsanleitung.
- Bewahren Sie die Bedienungsanleitung auf, damit Sie jederzeit darin nachschlagen können.
- Betreiben Sie den Sensor und das Zubehör nur in einwandfreiem Zustand.
- Beachten Sie zusätzlich die im Verwenderland und am Einsatzort geltenden Gesetze, Verordnungen, Richtlinien und Normen.

1.2 Bestimmungsgemäße Verwendung

Der Sensor STS wird in bzw. an Behältern oder Rohrleitungen installiert. Der optische Teil des Sensors taucht in das Prozessmedium ein, um durch Absorption von eingestrahltem Licht physikalische Eigenschaften zu messen.

Der Sensor muss regelmäßig gewartet werden.

- Stellen Sie einen auf Ihren Prozess abgestimmten Wartungsplan auf.
- Führen Sie nur Wartungsarbeiten aus, die in der Bedienungsanleitung beschrieben sind!
- Veränderungen an dem Sensor dürfen nur nach Rücksprache mit dem Hersteller vorgenommen werden.

Der Hersteller haftet nicht für Schäden, die aus unsachgemäßer oder nicht bestimmungsgemäßer Verwendung entstehen.

1

1.3 Gefahrenbereiche und Restgefahren

Sensoren sind an bzw. in Behältern und Rohrleitungen installiert, die unter Druck stehen können. Prozessflüssigkeit kann nur bei fahrlässigem Handeln und unsachgemäßer Bedienung entweichen.

- Stellen Sie vor der Inbetriebnahme und nach jeder Wartung sicher, dass alle Dichtungen sowie Anschlüsse vollständig und funktionstüchtig sind.
- Treffen Sie geeignete Schutzma
 ßnahmen, bevor Sie den Sensor ber
 ühren, weil Teile die Temperatur des Prozesses annehmen k
 önnen.

1.4 Betriebsmittel

Verwenden Sie nur geprüftes und zugelassenes Zubehör und Betriebsmittel.

- **Dichtungen** Der Sensor STS 03 benötigt keine Elastomer Dichtungen an den Prozessanschlüssen. Sollten Sie den Sensor über einen Adapter an Ihren Prozess anbinden, dann
 - wählen Sie die Materialeigenschaften der Prozessdichtung und der O-Ringe abhängig vom Prozessmedium und der Spülflüssigkeit.
 - berücksichtigen Sie die Quellfähigkeit und die Säure- bzw.
 Laugenbeständigkeit des Dichtungsmaterials.

1.5 Personal

QualifikationNur ausgebildetes Fachpersonal darf den Sensor einbauen und
warten!SchutzkleidungDas Bedienpersonal muss bei der Inbetriebnahme und den
Wartungsarbeiten eine Schutzbrille und geeignete Schutzkleidung
tragen.

UVV Beachten Sie die im Verwenderland und am Einsatzort gültigen Vorschriften und Regeln zur Arbeitssicherheit!

1.6 Entsorgung

Beachten Sie die Vorschriften und Regeln zur Abfallentsorgung, die im Verwenderland und am Einsatzort gelten.

1.7 Symbole und Piktogramme

In der Bedienungsanleitung dienen Piktogramme und Symbole zur besseren Orientierung.

GEFAHR!	Der Sicherheitshinweis mit dem Signalwort GEFAHR! weist darauf hin, dass Sie mit Gefahr für Leib und Leben und hohen Sachschäden rechnen müssen, wenn Sie die Anweisungen missachten.	
ACHTUNG!	Der Sicherheitshinweis mit dem Signalwort ACHTUNG! weist Sie darauf hin, dass Sie mit Sachschäden rechnen müssen, wenn Sie die Anweisungen nicht befolgen.	
!!!	Hier erhalten Sie einen wichtigen Hinweis!	
	Wenn Sie dieses Zeichen sehen, dann müssen Sie die	

Arbeitsschritte in der angegebenen Reihenfolge ausführen.

2 Produktbeschreibung

2.1 NIR - Sensor STS 03/04

NIR - Sensor

- Messverfahren Der NIR Sensor STS 03 / 04 ist ein 180° Durchlichtsensor der im Nahinfrarotbereich (880nm Wellenlänge) Absorption oder Trübung in Flüssigkeiten misst.
 - Absorption In flüssigen Medien wird ein gebündelter Lichtstrahl durch Absorption und Streuung geschwächt. Diese Schwächung kann bei einer definierten optischen Pfadlänge (Durchleuchtungsweg) gemessen und damit Rückschlüsse auf das durchleuchtete Medium abgeleitet werden, da die Absorption einer Flüssigkeit direkt proportional zu seiner Konzentration ist, was durch das Lambert-Beer Gesetz beschrieben wird. Die grundlegende Maßeinheit der Absorption ist AU (Absorption – Units). Ein AU entspricht 90% Lichtverlust, 2 AU 99%, 3 AU 99,9% und so weiter.
 - Trübung ist ein optischer Eindruck, der die Eigenschaft durchsichtiger Medien das Licht zu schwächen, beschreibt. Trübung ist keine eindeutig definierte oder physikalische Größe, sondern ein subjektiver Eindruck. Zur besseren Vergleichbarkeit werden Trübungsmessungen über sogenannte Vergleichsstandards (z.B. Formazin) kalibriert. Trotzdem hängen

die angezeigten Messwerte der jeweiligen Trübungsmessungen stark vom Messprinzip, der Wellenlänge, Messwinkel und der optischen Pfadlänge ab.

- **STS 03** Der NIR Sensor STS 03 ist ein Sensor zur Überwachung der optischen Dichte oder Trübung von Flüssigkeiten, um kontinuierliche Prozessergebnisse zu überwachen oder Veränderungen sicher anzuzeigen. Der Messbereich liegt dabei im Bereich von 0...6OD, 0..3 AU, 3250 EBC oder 0...13.000FAU.
- **STS 04** Der NIR Sensor STS 04 ist wie der STS 03 zur Überwachung der optischen Dichte von Flüssigkeiten, jedoch ausgelegt zum Einsatz in manuellen oder automatischen Wechselarmaturen der SAW Familie. Durch die Verwendung von Wechselarmaturen kann der Sensor bei laufendem Prozess gespült oder entnommen werden, wodurch Ergebnisverfälschungen durch Beläge an den Messfenstern wirksam verhindert werden und eine sichere Langzeitüberwachung von Prozessen ermöglicht wird.
- Messbereich Der Messbereich der STS 03/04 Sensoren ist bezogen auf die unterschiedlichen Messeinheiten wie folgt:

06 OD	Optische Dichte
03 AU	Absorptionseinheiten
03.250 EBC	European Brewery Convention
013.000 FAU	Formazin Absorption Unit
013.000 TEF	Trübungseinheiten Formazin
026.650 mg/l	Milligramm Trockensubstanz pro Liter

Display Am Display wird der jeweils aktuelle Messwert angezeigt. Mit Hilfe der Funktionstasten kann der Sensor konfiguriert werden. Das Display ist herausnehmbar, wodurch sich eine unbeabsichtigte Änderung der Einstellungen wirksam verhindern lässt.

2.2 Funktionen

Messprinzip(חףר) Legt das grundsätzliche Messprinzip des Sensors fest. Man
kann zwischen Absorptionsmessung und Trübungsmessung
wählen.

Messeinheit	Cum B Legt die angezeigte Messwerteinheit fest. Man kann bei der Absorptionswessung zwischen AU (Absorption Unit) und einer selbst festgelegten, freien Messwerteinheit CDU (Customer Defined Unit) wählen.Hat man als Messprinzip die Trübungsmessung ausgewählt so kann man zwischen folgenden Messwerteinheiten wählen:EBCEuropean Brewery ConventionFAUFormazin Absorption UnitTEFTrübungseinheiten FormazinMGLMilligramm pro Literund einer selbst festgelegten, freien Messwerteinheit CDU(Customer Defined Unit).
	Dabei gilt: 1 FAU = 1 TEF = $0,25$ EBC = $2,05$ mg/l.
Dezimalpunkt Anwender-Einheit Displayumschaltung	 <i>Legt</i> den Dezimalpunkt (Nachkomma Stelle) In der Anzeige fest <i>Legt</i> Anzeigeumfang der Anwender-Einheit fest Legt fest, welcher Messwert angezeigt werden soll: <i>Lwrb</i> Trübung / Absorption <i>LENP</i> Temperatur <i>Trübung</i>/Absorption und Temperatur im Wechsel Unabhängig von der Displayumschaltung liefert der Analogausgang immer ein von der Trübung / Absorption abhängiges Signal.
Messbereichsanfang	(<i>n</i>-B) Legt den 4mA Punkt für den Ausgangsstrom fest. Der Bereich kann zwischen 019999 (0,00019,999) frei gewählt werden. Der Messbereich wird in der jeweils aktuellen Messwerteinheit eingestellt.
Messbereichsende	(<i>n-E</i>) Legt den 20mA Punkt für den Ausgangsstrom fest. Der Bereich kann zwischen 019999 (0,00019,999) frei gewählt werden. Der Messbereich wird in der jeweils aktuellen Messwerteinheit eingestellt.
Dämpfung	(dRn) Dämpft den Messwert im Bereich von 0,0200,0 Sekunden sowohl für den Ausgangsstrom, als auch für die Anzeige im Display.
Nullpunktfenster	<i>(r-0-)</i> Legt einen Bereich in Anzeigedigits um den Nullpunkt fest, in dem der Messwert auf 0 gesetzt wird.

Einschaltpunkt	<i>(don)</i> Legt den Einschaltpunkt des Schaltausgangs fest. Der Bereich kann zwischen 019999 (0,00019,999) frei gewählt werden.	
Ausschaltpunkt	(doFF) Legt den Ausschaltpunkt des Schaltausgangs fest. Der Bereich kann zwischen 019999 (0,00019,999) frei gewählt werden.	
Schaltfunktion	(dtyp) Legt die Schaltfunktion des Schaltausgangs fest. Es kann zwischen Öffner und Schließer gewählt werden.	
Schaltverzögerung	<i>(ddLY)</i> Legt eine Schaltverzögerung des Schaltausgangs fest. Der Bereich kann zwischen 0,0200,0 Sekunden frei gewählt werden.	
Untere Ausgangsgrenze	(<i>r oLL)</i> Legt den minimalen Ausgangsstrom fest. Der Bereich kann zwischen 0 22,5mA frei gewählt werden.	
Obere Ausgangsgrenze	(<i>r oHL)</i> Legt den maximalen Ausgangsstrom fest. Der Bereich kann zwischen 0 22,5mA frei gewählt werden.	
Fehlerstrom	 (Поч В Erkennt der Transmitter einen internen Fehler, wird auf dem Display ein Fehlercode angezeigt und der hier festgelegte Fehlerstrom ausgegeben. Der Fehlerstrom kann zwischen 0 22,5mA frei gewählt werden. 	
Tastensperre	(RuLo) Nach entsprechender Betriebszeit wird die Tastatur gesperrt, um unbefugte Bedienung zu verhindern. Der Einstellbereich kann zwischen 0100 Minuten frei gewählt werden, die Einstellung 0 setzt die Tastensperre außer Funktion.	
Reset	<i>(r5b</i> Mit Setzen der Reset - Funktion im Anwendermenü auf "YES" werden alle Parameter des Anwendermenüs auf Werkseinstellungen zurückgesetzt. Kalibrierwerte bleiben erhalten.	
ESC	<i>(ESc)</i> Mit abschließender Bedienung der ESC - Funktion im Anwendermenü, werden alle geänderten Parameter des voran gegangenen Parametrierung gespeichert. Kalibrierwerte bleiben erhalten	
	2.3 Kalihrierung	

Das Trübungsmessgerät STS-03/04 hat eine Werkskalibrierung durchlaufen, auf die immer wieder, auch bei Fehlbedienungen, rückgesetzt werden kann. Diese Werkskalibrierung wird sowohl

	mit Absorptionsstandards als auch mit Formazinlösung durchgeführt. Daher ist der Sensor sowohl für Absorption- als auch für Trübungsmessungen vorbereitet und direkt einsetzbar.
	Da die Trübung keine eindeutig definierte Größe, sondern ein subjektiver Eindruck ist, werden Trübungsgeräte mit Vergleichsstandards kalibriert. Die angezeigten Messwerte außerhalb der Vergleichsstandards hängen jedoch stark vom Messsystem, Wellenlänge und Messwinkel ab. Zur besseren Vergleichbarkeit unterschiedlicher Messsysteme kann eine anwenderbezogene Kalibrierung sinnvoll sein. Dies kann im Kalibriermenü durchgeführt werden, ohne die Werkskalibrierung endgültig zu löschen. Sinnvolle Kalibrierabläufe sind im Kap.6 Kalibrierung beschrieben.
Anzahl der Kalibrierpunkte	<i>(cdEF)</i> Legt die Anzahl der Kalibrierpunkte für eine Awender- kalibrierung fest. Man kann zwischen minimal 2 und maximal 6 Punkten wählen.
Kalibrierpunkte Sollwerte	<i>(دالــ6)</i> Hier werden die Sollwerte der jeweiligen Kalibrierpunkte eingestellt.
Kalibrierpunkte Istwerte	<i>(cRLI6)</i> Hier werden die Istwerte der jeweiligen Kalibrierpunkte eingestellt.
Speichern	(SRJE) Die Anwenderkalibrierung wird gespeichert und übernommen, sobald die Funktion "SAVE" auf "YES" gesetzt wird.
Reset	Mit der Reset - Funktion im Kalibriermenü wird die Anwenderkalibrierung verworfen und der Sensor auf die Werkskalibrierung zurückgesetzt. Die Parametrierung im Anwendermenü bleibt jedoch erhalten.
	2.4 Prozessintegration

SensorDer Sensor STS 03 wird über seinen hygienischen modularen ½"Prozessanschluss direkt mittels eine Einschweißmuffe (z.B. BP15)in Rohrleitungen oder Behälter eingebaut oder mitentsprechenden Prozessadaptern in vorhandeneProzessanschlüsse eingesetzt. Der Stabsensor STS 04 wird in eine

Wechselarmatur eingebaut (SAW), die wiederum an den Prozessleitungen oder Behälter angeschlossen wird.

Transmitter Der Transmitter wird mit 24V DC versorgt, hat einen frei parametrierbaren Schaltausgang und einen 4...20mA Ausgang zur Messwertausgabe.

Prozessintegration

DruckDer Sensor STS darf bis zu einem Druck von 10bar und einerTemperaturmaximalen Prozesstemperatur von 90°C eingesetzt werden.

(140 °C Maximum für 2 Std. (SIP - Zyklus)

Beachten Sie die Druck- und Temperatur-Diagramme in Kapitel 9.5!

Einbaulage Die Sensoren können grundsätzlich in jeder Lage betrieben werden. Um Fehlmessungen zu vermeiden, achten Sie jedoch darauf, dass keine Lufteinschüsse bzw. Verschmutzungen die Messungen beeinträchtigen können. Ein Einbau der Geräte in eine vertikale von unten angeströmte Leitung wäre hier ideal. Wenn Sie auf die Lesbarkeit der Anzeige achten, haben Sie in der Regel das Gerät richtig platziert. Eine gute Zugänglich- und Bedienbarkeit sowie die Ableitung bei hohen Temperaturen ist ebenfalls zu empfehlen. Ein beachten dieser Empfehlungen erhöht zwangsläufig die Lebensdauer von Prozessmessgeräten. Bitte sehen Sie hierzu auch unsere Broschüren Einbaubedingungen Messtechnik. Messfenster Die Messfenster müssen so ausgerichtet werden, dass sich keine Luftblasen oder Partikel dazwischen verfangen können. Die Messfenster sind sauber zu halten. Dies kann durch eine geeignete CIP / SIP Reinigung erfolgen oder verwenden Sie den

STS in Kombination mit einer Wechselarmatur SAW.

3 Lieferung

3.1 Lieferumfang

Der Sensor wird im Werk kalibriert und einbaufertig in einer Verpackung ausgeliefert, die dem Sensor optimalen Schutz bietet.

Die Lieferung umfasst:

- Sensor STS
- Schutzhülse für Messoptik (nur STS 03)
- Bedienungsanleitung
- Zertifikat f
 ür Oberfl
 ächen (Option)
- Zertifikat f
 ür medienber
 ührte Werkstoffe (Option)

Bewahren Sie den Sensor in der Verpackung auf. Dort ist er bis zum Einbau am besten geschützt.

3.2 Prüfen der Lieferung

Bevor Sie den Sensor für die Montage freigeben, müssen sie Folgendes sicherstellen:

Verpackung und Gerät sind in einwandfreiem Zustand.

Das Typenschild des Sensors stimmt mit den Angaben der Bestellung überein.

Bei Rückfragen wenden Sie sich bitte direkt den Hersteller.

4 Montage

4.1 Anlage vorbereiten

Stellen Sie sicher, dass

genügend Arbeitsraum für den Betrieb des Sensors vorhanden ist. der Prozess abgeschaltet ist.

Behälter oder Rohrleitungen druckfrei, leer und sauber sind.

Anschlussstutzen und Prozessanschluss des Sensors zusammenpassen.

4.2 Mechanischer Anschluss

 $\mathbf{\nabla}$

Verletzungsgefahr durch austretende Prozessflüssigkeit! Verbrennungen oder Verätzungen je nach Eigenschaft der Prozessflüssigkeit.

Tragen Sie Schutzbrille und Schutzkleidung!

Kontrollieren Sie, dass Behälter oder Rohrleitung an die der Sensor angeschlossen wird druckfrei, leer und sauber sind!

Setzen Sie den Sensor in den passenden modularen Prozesssanschluß (modular@process siehe auch Kap. 10 Ersatzteile und Zubehör) ein.

Ziehen Sie die Druckschraube (1) mit maximal 10 Nm an.

 $\mathbf{\Lambda}$

4.3 Elektrischer Anschluss

Stellen Sie zuerst Folgendes sicher:

dass Sie ein original Anschlusskabel IP69K mit dem richtigen VA-Anschlussstecker verwenden.

So schließen Sie den Sensor an:

Schließen Sie das Kabel wie folgt an:

Pin	Farbe	Bezeichnung
1	braun	+Versorgung (24VDC)
2	weiß	Schaltausgang
3	blau	-Versorgung
4	schwarz	Analogausgang 4-20mA
5	grau	Nicht belegt

Stecken Sie das Anschlußkabel auf die Steckerbuchse des Sensors und ziehen Sie die Überwurfmutter handfest an.

5 Parametrierung

5.1 Anwendermenü

ACHTUNG!Durch falsche Einstellungen in den Parametern können falscheMesswerte und Schaltpunkte ausgegeben werden. Dies kann zu
ungewollter Prozessbeeinflussung führen.

 \checkmark

Stellen Sie sicher, dass nur befugtes und geschultes Personal Änderungen an der Parametrierung vornimmt.

Der Sensor wird über die Funktionstasten am Display parametriert.

Durch Drücken der Enter – Taste gelangt man in das Anwendermenü. Durch Drücken der Pfeiltasten gelangt man zu den einzelnen Parametern.

Will man einen Parameter konfigurieren, betätigt man wiederum die Enter – Taste, wählt über die Pfeiltaste die gewünschte Einstellung und bestätigt endgültig mit Enter.

Zurück zur Anzeige gelangt man jeweils am Ende der Parameter, indem man ESC (Escape) mit der Enter – Taste bestätigt.

Anwendermenü

Die **fettgedruckten** und **unterstrichenen Werte** sind die **Standard-Anwenderparameter**. Die Funktion "*r*5*L*" setzt alle Anwenderparameter auf den Standard zurück.

Para- meter	Bezeichnung	Wertebereich	Beschreibung
ESC	Menüanfang / -ende	entfällt	Menü Ein- und Ausgang
NPr	Messprinzip	لعبر Trübung RBS Absorption	
unit	Wahl der	MPR = <i>88</i> 5	MPR = <i>Е</i> ог
	Messwerteinheit	<i>R</i> ມ (Au) <i>E d</i> ມ (CDU)	EBC (EBC) FRω (FAU) ŁEF (TEF) ΠGL (mg/l) Edω (CDU)
Cdud	Dezimalpunkt Anwendereinheit	00,000	Legt die Nachkommastellen der Anwendereinheit (cdu) fest

Para- meter	Bezeichnung	Wertebereich	Beschreibung
[du	Anwendereinheit	019999	Legt den Wertebereich der Anwendereinheit (<i>Edu</i>) fest
dSP	Displayumschaltung	<u>њг</u> ь, ЕПР, RLE	Festlegung welcher Messwert angezeigt werden soll: burb : Trübung Abs. HENP : Temperatur ALL : Trübung / Abs. u. Temperatur im Wechsel
			Unabhängig vor der Displayumschaltung liefert der Analogausgang immer ein von der Trübung abhängiges Signal.
ПгЬ	Messbereichsanfang (Measurering begin)	<u>0</u> 19999	Legt den 4mA-Punkt fest.
Nr E	Messbereichsende (Measurering end)	0 19999	Legt den 20mA-Punkt fest.
JAU	Dämpfung (Damping)	<u>0.0</u> 200.0	Dämpft den Trübungs- Messwert.
r-0-	Nullpunktsfenster (Range of Zero)	Q 1/3 Mbr.	Legt einen Bereich in Anzeigendigits um den Nullpunkt fest, in dem der Messwert auf null gesetzt wird.
don	Einschaltpunkt (Digital Output on)	<u>0</u> 19999	Legt den Einschaltpunkt fest.
doFF	Ausschaltpunkt (Digital Output off)	0 19999	Legt den Ausschaltpunkt fest.
dESP	Schaltfunktion (Digital Output typ)	<u>חס</u> , חכ	no = Schließer nc = Öffner
ddLY	Schaltverzögerung (Digital Output delay)	<u>0.0</u> 200.0s	Verzögert den Schaltpunkt um bis zu 200s.
RoLL	unterer Ausgangsgrenze (Analog Output lower limit)	3,5 22.5mA	Legt den minimalen Ausgangsstrom fest.
RouL	obere Ausgangsgrenze (Analog Output upper limit)	3,5 <u>22.5</u> mA	Legt den maximalen Ausgangsstrom fest.
ΠουΕ	Fehlerstrom (Malfunction Output)	3,5 22.5 mA	Erkennt der Transmitter einen internen Fehler wird ein Fehlercode angezeigt und das festgelegte Stromsignal ausgegeben.
RuLo	Tastensperre	<u>0</u> 100min.	Nach entsprechender Betriebszeit wird die Tastatur gesperrt, um unbefugte Bedienung zu verhindern. Die Einstellung 0 setzt die Tastensperre außer Funktion.
rSŁ	Reset	<u>no</u> , 985	Rücksetzen auf der Anwenderparameter auf Standardeinstellung Kalibrierwerte bleiben erhalten
ESC	Menüanfang / -ende	entfällt	Menü Ein- und Ausgang (Speicherung der eingegebenen Parameter)

5.2 Ausgangsstrom

Der Sensor STS ist mit einem 4...20mA Ausgang ausgerüstet, um die Absorptionsmesswerte auszugeben. Der Ausgangsstrom wird durch folgende Parameter konfiguriert:

nrb legt den Messbereichsanfang und damit den 4mA Punkt fest.

nrE legt das Messbereichsende und damit den 20mA Punkt fest.

dRn legt die Dämpfung fest, die auf Display und Ausgangstrom wirkt.

RoLL legt den minimalen Ausgangsstrom fest, der ausgegeben werden kann.

Roul legt den maximalen Ausgangsstrom fest, der ausgegeben werden kann.

Nout legt den Fehlerstrom fest, der bei einem internen Fehler am Ausgangsstrom angelegt wird.

5.3 Schaltpunkte

Der Sensor STS besitzt einen PNP - Schaltausgang, der durch vier Parameter konfiguriert wird.

don legt den Einschalt- und doFF den Ausschaltpunkt fest.

Zusammen bestimmen die beiden Parameter die Funktion vom Schaltausgang:

Ist *don* kleiner als *doFF*, so schaltet der Ausgang ein, wenn der Messwert zwischen den Schaltpunkten liegt (Fensterfunktion).

Ist **don** größer als **doFF**, so schaltet der Ausgang ein, wenn der Messwert **don** überschreitet. Ausgeschaltet wird erst wieder, wenn der Messwert **doFF** unterschreitet (Hysteresefunktion).

Sind *don* und *doFF* gleich, schaltet der Ausgang ein, wenn der Messwert den Schaltwert *don + doFF* überschreitet und aus, wenn der Messwert den Schaltwert *don + doFF* wieder unterschreitet.

Beide Parameter lassen sich unabhängig voneinander einstellen.

d*L***'P** kehrt die Funktion des Schaltausgangs um. Ist der Wert = *no*, arbeitet der Schaltausgang als Schließer (NO), ist der Wert = *nc*, arbeitet der Schaltausgang als Öffner (NC).

ddLY verzögert die Reaktion des Schaltausgangs um bis zu 200,0s. Dieser Wert gilt für das Ein- und Ausschalten gleichermaßen.

5.4 Display

Der Sensor STS ist mit einem herausnehmbaren Display ausgestattet. Der Sensor kann über das Display parametriert werden. (Optional mittels PC)

Der Sensor arbeitet auch ohne Display, wie zuvor parametriert.

dSP legt den Anzeigewert fest. Auf dem Display kann die Trübung /Absorption, die Temperatur in °C oder beide Werte alternierend angezeigt werden.

5.5 Tastatursperre

Sie können die Tastatur gegen unberechtigten Zugriff sperren.

RuLo schaltet die Tastatursperre ein, indem Sie einen Wert größer als "0" einstellen. Der eingestellte Wert entspricht der Zeit in Minuten, ab der die Tastatur gesperrt wird, nachdem die letzte Eingabe getätigt wurde. Eine neuerliche Eingabe lässt die Zeit erneut starten. Der Einstellwert "0" deaktiviert die Tastatursperre.

Die gesperrte Tastatur lässt sich über kurzzeitiges Stromlos – schalten des Sensors wieder entsperren. Lösen Sie dafür kurzzeitig den Stecker und setzen Sie ihn anschließend wieder auf.

5.6 Reset

Sie können alle Anwenderparameter auf Werkseinstellungen zurücksetzten.

r 5E setzt alle Parameter auf Werkseinstellungen zurück, indem Sie den Einstellwert auf *YES* ändern und mit der Enter – Taste bestätigen. Eine Anwenderkalibrierung bleibt hiervon unberührt, diese kann nur im Kalibriermenü Kap.6.1 zurückgesetzt werden.

6 Kalibrierung durch den Anwender

6.1 Kalibriermenü

ACHTUNG!Durch falsche Einstellungen in den Parametern können falscheMesswerte und Schaltpunkte ausgegeben werden. Dies kann zu
ungewollter Prozessbeeinflussung führen.

 \checkmark

Stellen Sie sicher, dass nur befugtes und geschultes Personal Änderungen an der Kalibrierung vornimmt.

Der Sensor wird über die Funktionstasten am Display parametriert.

Durch Drücken der Pfeil $\underline{\Lambda}$ – Taste für 4-5 Sekunden, gelangt man in das Kalibriermenü. Durch wiederholtes Drücken der Pfeiltasten gelangt man zu den einzelnen Parametern.

Will man einen Parameter konfigurieren, betätigt man die Enter – Taste, wählt über die Pfeiltaste die gewünschte Einstellung und bestätigt endgültig mit Enter.

Zurück zur Anzeige gelangt man jeweils am Ende der Parameter, indem man *ESC* (Escape) mit der Enter – Taste bestätigt.Die Funktion "*r SE*" setzt die Kalibrierung auf die Werkskalibrierung zurück.

Para- meter	Bezeichnung	Wertebereich	Beschreibung
ESC	Menüanfang / -ende	entfällt	Menü Ein- und Ausgang
CdEF	Anzahl der Kalibrierpunkte	26	Legt die Anzahl der Kalibrierpunkte fest.
כלו כלץ	Kalibrierpunkte: Sollwerte	019999 bzw. 0,00019,999	Legt die Sollwerte der Kalibrierpunkte fest (muss von Anwender eingegeben werden)
cALI cAL6	Kalibrierpunkte: Istwerte	019999 bzw. 0,00019,999	Legt die Istwerte der Kalibrierpunkte fest (muss von Anwender eingegeben werden) Die Anzeige wechselt mit den Sollwerten
SRJE	Speichern der Kalibrierung	<u>по</u> , УЕS	Speichert bzw. übernimmt die Anwenderkalibrierwerte und überschreibt damit die letzte Kalibrierung .
rSE	Reset	<u>no</u> , YES	Rücksetzen auf Werkskalibrierung, die Anwenderparameter bleiben erhalten

Para- meter	Bezeichnung	Wertebereich	Beschreibung
ESC	Menüanfang / -ende	entfällt	Menü Ein- und Ausgang (Speicherung der einge- gebenen Parameter)

6.2 Kalibrierung mit Vergleichslösungen

ACHTUNG!	Dur Mes ung	ch falsche Einstellu swerte und Schalt ewollter Prozessbe	ungen in den Paramete punkte ausgegeben we eeinflussung führen.	rn können falsche erden. Dies kann zu
\checkmark	Stellen Sie sicher, dass nur befugtes und geschultes Personal Änderungen an der Kalibrierung vornimmt.			
	Der par	[.] Sensor wird üb ametriert. Die B	er die Funktionstast edienschritte finden	en am Display Sie im Kapitel 6.1.
	Eine dure	e Kalibrierung mit V ch:	/ergleichslösungen füh	ren Sie wie folgt
	1.	Überprüfen Sie, o Messprinzip (Abs Kap. 5.1)	dass der Sensor auf da orption / Trübung) ein	s gewünschte gestellt ist. (Siehe
	2.	Setzen Sie die Ka Kap. 6.4 und sich	alibrierung auf Werkska nern Sie die Rückstellui	alibrierung zurück <i>r 51</i> . ng mit <i>58JE = 9E5.</i>
	3.	Bereiten Sie sich hier für 4 unterse	eine Tabelle nach folg chiedliche Vergleichslös	endem Muster vor, sungen dargestellt.
	Ve	rgleichslösung	bekannter Sollwert der Vergleichslösungen	ermittelter Istwert der Vergleichslösungen
		1	z.B 250 EBC	z.B. 234EBC
		2		

Dabei bezeichnet der Sollwert den bekannten Wert der Vergleichslösung (z.B. Herstellerangaben).

3

4...6

- Tragen Sie die bekannten Werte der Vergleichslösungen in der Tabelle in die Spalte **Sollwerte** ein. Diese Werte soll das Gerät nach der Kalibrierung anzeigen.
- Messen Sie mit dem Sensor nacheinander die Vergleichslösungen und tragen Sie die vom Sensor angezeigten Istwerte in die Tabelle ein. Vermeiden Sie Fehlmessungen durch Verschleppung indem Sie den Sensor zwischen den jeweiligen Messungen spülen und gut abtrocknen.
- 6. Übertragen Sie die Werte aus der Tabelle wie folgt in den Sensor (siehe Kap. 6.1):
 - legen Sie die Anzahl der Kalibrierpunkte fest CdEF
 - geben Sie die bekannten Sollwerte der Kalibrierlösungen ein *LJI-LJB*
 - geben Sie die ermittelten Istwerte der Kalibrierlösungen ein CRLI-CRL6
- 7. Bestätigen Sie mit *SRJE* = *YES* (Kap. 6.1).

Sie können die Kalibrierung überprüfen, indem Sie den Sensor erneut in die Vergleichslösungen eintauchen. Zeigt der Sensor die Sollwerte an ist die Kalibrierung erfolgreich.

Achten Sie darauf, dass die verwendeten Vergleichslösungen möglichst Ihren gewünschten Messbereich abdecken.

6.3 Kalibrierung mit Vergleichsgerät

ACHTUNG!

 \mathbf{N}

Durch falsche Einstellungen in den Parametern können falsche Messwerte und Schaltpunkte ausgegeben werden. Dies kann zu ungewollter Prozessbeeinflussung führen.

Stellen Sie sicher, dass nur befugtes und geschultes Personal Änderungen an der Kalibrierung vornimmt.

Der Sensor wird über die Funktionstasten am Display parametriert. Die Bedienschritte finden Sie im Kapitel 6.1

Wenn Sie in einem laufenden Prozess den STS an ein Vergleichsgerät anpassen möchten, so führen Sie eine Kalibrierung mit Vergleichsgerät wie folgt durch:

- Überprüfen Sie, dass der Sensor auf das gewünschte Messprinzip (Absorption / Trübung) eingestellt ist. (Siehe Kap. 5.1)
- Setzen Sie die Kalibrierung auf Werkskalibrierung zurück r 5Ł.
 Kap. 6.4 und sichern Sie die Rückstellung mit SRJE = YES.
- 3. Bereiten Sie sich eine Tabelle nach folgendem Muster vor, hier für 4 unterschiedliche Vergleichsmessungen dargestellt.

Vergleichslösung	Sollwert Messwert des Vergleichsgerätes	Istwert Messwert des STS
1	z.B. 1250 FAU	z.B. 1225 FAU
2		
3		
46		

Um den Sensor STS an ein Vergleichsgerät anzupassen werden anstelle von gebrauchsfertigen Vergleichslösungen beliebige Proben zur Kalibrierung herangezogen. Diese Proben werden mit dem Vergleichsgerät vermessen. Das jeweilige Ergebnis entspricht dem Sollwert.

Die Messwerte die der Sensor STS in den jeweiligen Proben anzeigt entsprechen den Istwerten.

- Tragen Sie die mit dem Vergleichsgerät ermittelten Messwerte der Proben in der Tabelle in die Spalte **Sollwerte** ein. Diese Werte soll das Gerät nach der Kalibrierung anzeigen.
- Messen Sie mit dem Sensor STS nacheinander die Proben und tragen Sie die vom Sensor angezeigten Istwerte in die Tabelle ein. Vermeiden Sie Fehlmessungen durch Verschleppung indem Sie den Sensor zwischen den jeweiligen Messungen spülen und gut abtrocknen.
- 6. Übertragen Sie die Werte aus der Tabelle wie folgt in den Sensor (siehe Kap. 6.1):

- legen Sie die Anzahl der Kalibrierpunkte fest CdEF

- geben Sie die bekannten Sollwerte der Kalibrierlösungen ein *LJI-LJB*
- geben Sie die ermittelten Istwerte der Kalibrierlösungen ein CRLI-CRL6
- 7. Bestätigen Sie mit *SRJE* = *YES* (Kap. 6.1).

Sie können die Kalibrierung überprüfen, indem Sie den Sensor erneut in die Proben eintauchen. Zeigt der Sensor die Sollwerte an ist die Kalibrierung erfolgreich.

Achten Sie darauf, dass die verwendeten Proben möglichst Ihren gewünschten Messbereich abdecken.

6.4 Auf Werkskalibrierung rückstellen

ACHTUNG!

Durch falsche Einstellungen in den Parametern können falsche Messwerte und Schaltpunkte ausgegeben werden. Dies kann zu ungewollter Prozessbeeinflussung führen.

Stellen Sie sicher, dass nur befugtes und geschultes Personal Änderungen an der Kalibrierung vornimmt.

Der Sensor wird über die Funktionstasten am Display parametriert. Die Bedienschritte finden Sie im Kapitel 6.1

Wenn Sie den Sensor STS auf die Werkskalibrierung zurücksetzten und damit mögliche Anwenderkalibrierungen löschen möchten, gehen Sie wie folgt vor:

- Drücken Sie die Pfeil <u>∧</u> Taste für 4-5 Sekunden. Sie gelangen in das Kalibriermenü.
- 2. Drücken Sie die Pfeil $\underline{\Lambda}$ Taste bis in der Anzeige **r** SE angezeigt wird
- 3. Drücken Sie die Enter- Taste und wählen mit der Pfeil $\underline{\Lambda}$ Taste *YES*.
- 4. Drücken Sie erneut die Enter- Taste, um das Rücksetzen zu bestätigen.

Drücken Sie die Pfeil V- Taste um in die SRJE Funktion zu gelangen. Bestätigen Sie mit SRJE = YES um das Rücksetzen auf Werkskalibrierung zu speichern.

7 Wartung

7.1 Wichtige Hinweise zur Wartung

Stellen Sie sicher, dass nur befugtes und geschultes Personal Wartungsarbeiten vornimmt.

Stellen Sie einen auf Ihren Prozess abgestimmten Wartungsplan auf!

Wartungsarbeiten immer mit geeigneter Schutzkleidung ausführen.

Führen Sie nur Wartungsarbeiten oder Reparaturen aus, die in der Betriebsanleitung beschrieben sind!

Bauliche Veränderungen dürfen nur nach Rücksprache mit dem Hersteller vorgenommen werden.

Bevor Sie den Sensor vom Prozess trennen, müssen Rohrleitungen oder Behälter druckfrei, leer und sauber sein.

7.2 Prozessanschluss kontrollieren

Der Sensor wird über die Druckschraube (1) in dem Prozessstutzen gehalten und gedichtet.

 \mathbf{N}

Prüfen Sie regelmäßig, ob der Prozessanschluss dicht ist.

Ziehen Sie ggf. die Druckschraube (1) mit maximal 10 Nm an.

WARNUNG!	 Prozessflüssigkeit entweicht am Prozessanschluss! Gefährdung je nach Eigenschaft des Prozessmediums! Druckschraube mit maximal 10 Nm anziehen. 	
	7.3 Messfenster reinigen	
	Die Trübung / Absorption wird über zwei Messfenster (Saphir) ir	

Die Trübung / Absorption wird über zwei Messfenster (Saphir) im Prozess gemessen. Verunreinigungen oder Beläge verfälschen den Messwert.

Reinigen Sie regelmäßig die Messfenster von Belägen.

Entnehmen Sie den Sensor aus dem Prozessanschluss.

Reinigen Sie die Messfenster von Belägen

GEFAHR!

- Tragen Sie Schutzbrille und Schutzkleidung!
- Kontrollieren Sie, ob Behälter oder Rohrleitung an die der Sensor angeschlossen wird druckfrei, leer und sauber sind!

Verletzungsgefahr durch austretende Prozessflüssigkeit!

Abb. 5: Messfenster am Sensor

7.4 Wartungsplan

Führen Sie die Wartungsarbeiten in den empfohlenen Intervallen durch!

vierteljährlich	►	Dichtigkeit des Prozessanschlusses visuell überprüfen
-		

- > Druckschraube mit maximal 10 Nm anziehen
- jährlich > Sensor ausbauen und Messfenster reinigen.

Passen Sie die erforderlichen Wartungsintervalle an Ihre Prozessbedingungen an.

Maximale Betriebsdauer der Sendeeinheit (LED)

Die maximale Betriebsdauer der Sendeeinheit in optischen Systemen der STS-Baureihe ist abhängig von verschiedenen Einsatzparametern.

- 1. Gesamt Einschaltdauer in Stunden
- 2. Prozessbedingungen (Temperatur)
- 3. Überschreitung der max. Temperatur

Die normale Lebensdauer einer Sende LED liegt unter normalen Prozessbedingungen bei ca. > 100.000 Stunden. Die Lebens-dauer kann entscheidend verlängert werden, indem das Gerät bei Nichtverwendung des Ausgangssignals abgeschaltet wird. Hinzu kommt, dass bei Überschreiten der max. angegebenen Prozesstemperatur und gleichzeitigem Betrieb der Sende LED eine Verringerung der Lebensdauer zu erwarten ist.

7.5 Entsorgung

Sensor Achten Sie darauf, dass der Sensor frei von Gefahr- und Giftstoffen ist. Die Einzelteile müssen getrennt nach ihrem Werkstoff entsorgt werden.

> Beachten Sie die Vorschriften und Regeln zur Abfallentsorgung, die im Verwenderland und am Einsatzort gelten.

Verpackung Die Verpackung ist aus Karton und kann dem Altpapier zuführt werden.

8 Hilfe im Problemfall

8.1 Kein oder fehlerhafter Messwert

 mögliche Ursache 	➤ Abhilfe
 keine Spannung am Sensor 	 Elektrischen Anschluss gemäß (Kap.4.3) prüfen / herstellen
 Messfenster sind belegt 	 Messfenster reinigen (Kap.7.3) Wenn die Messfenster häufig verschmutzen, verwenden Sie besser einen STS04 mit Wechselarmatur SAW8XX.
 Kalibrierung fehlerhaft 	 Kalibrierung im Kalibriermenü auf Werkseinstellungen zurücksetzen (Kap.6.1)

8.2 Stark schwankender Messwert

•	mögliche Ursache	▶ Abhilfe
•	Luftblasen im System	 Anzeige und Ausgangsstrom dämpfen (Kap.5.2)
•	Sensor taucht nicht völlig in die Prozessflüssigkeit ein	 Einbauort ändern

8.3 Ausgangsstrom passt nicht zum Messwert

 mögliche Ursache 	▶ Abhilfe
 Stromausgang falsch parametriert 	 Parametrierung des Stromausgangs überprüfen und ggf. ändern. (Kap.5.2)
 Elektrischer Anschluss fehlerhaft 	 Elektrischen Anschluss gemäß (Kap.4.3) prüfen / herstellen

8.4 Schaltausgang schaltet nicht korrekt

 mögliche Ursache 	▶ Abhilfe
 Schaltausgang falsch parametriert 	 Parametrierung des Schaltausgangs überprüfen und ggf. ändern. (Kap.5.3)
 Elektrischer Anschluss fehlerhaft 	 Elektrischen Anschluss gem

8.5 Tastatur lässt sich nicht bedienen

•	mögliche Ursache	▶ Abhilfe
•	Tastatursperre ist aktiviert	 Tastatur entsperren (Kap.5.5)

8.6 Fehlermeldung im Display

 Fehlermeldung 	➤ Abhilfe	
 Err0 Werksabgleich fehlerhaft 	 Reparatur beim Hersteller 	
Errl Anwenderparameter fehlerhaft	 Mit der Funktion rSE die Anwenderparameter zurücksetzen (Kap.5.7) 	
 Err2 Temperaturmessung fehlerhaft 	 Reparatur beim Hersteller 	
 Err3 Messbereichsspreizung fehlerhaft 	 Die Parameter "П-ь" und "П-Е" prüfen. Max. Spreizung 4:1 	
• Err4 ADC - Fehler	 Reparatur beim Hersteller 	
 Err5 Temperaturüberschreitung des Mediums (100°C) Werkseinstellung 	 Temperatur des Mediums wieder unter 100°C absenken 	

9 Technische Daten

9.1 Normen

EN 61326-1: 10-2006 EN 61326-2-3: 5-2007 DIN/EN 27027 (ISO 7027)

9.2 Spezifikation

Sensorspezifikationen	
Messbereich	06 OD /03 AU /03250 EBC/013.000 FAU
Wellenlänge	880 nm
Lichtquelle	LED
Optische Pfadlänge	5 mm
Material	Edelstahl 1.4435 (316L)
Oberflächengüte	Elektropoliert < Ra 0,37µm
Messfenster	Saphir
Versorgungsspannung	24VDC
Ausgangsstrom	420mA
Schaltausgang	NO oder NC parametrierbar 150mA max.
Schutzart	IP67/IP69K
Kabelanschluss	M12 Stecker 5-polig
Kabellänge	3m oder 5m
Prozessanschluss	G ¹ /2" für Prozessanschlüsse (modular@process)

9.3 Abmessungen

STS03

STS04

Sensorlänge (sensor length) 225mm

9.4 Umgebungsbedingungen

Umgebungstemperatur	- 10 - 70 °C
Transport- und Lagertemperatur	- 20 - 80 °C
9.5 Prozessbedingungen STS

max. zul. Druck PS:	10 bar	
max. zul. Temperatur TS:	90 °C	
Max. zul. Sterilisationstemperatur	141°C	max. 2 Std.

Druck-Temperatur-Diagramm STS

9.6 Bestellstruktur STS03

9.7 Bestellstruktur STS 04

10 Ersatzteile und Zubehör

Zubehör STS 03 / 04	
Beschreibung	Bestellnummer
Anschlusskabel 2m	S0112-00048
Anschlusskabel 5m	S0112-00008
Anschlusskabel 10m	S0112-00013
Bediendisplay	S0552-00021

Zubehör für Stabsensor STS 04		
Beschreibung	Bestellnummer	
Handwechselarmatur SAS-310	auf Anfrage	
Wechselarmatur SAW-830	auf Anfrage	
	auf Anfrage	

Zertifikate STS 03 / 04	
Beschreibung	Bestellnummer
Zertifikat EN10204-2.2 für Oberflächenrauheit (Ra<0,38µm)	2-121-01-001
Zertifikat EN10204-3.1 für Werkstoff	2-121-01-002

Prozessanschlüsse (Auszug) STS 03 (Nähere Infos siehe Datenblatt modular@process)		
Beschreibung	Zeichnung	
Einschweißstutzen G ½" zylindrisch BP15	ø30 G1/2" ***	
Einschweißstutzen G ½" rund AP15	ø30 G1/2" Ø35	
Prozessadapter Varivent F DN25-40 HP15	G1/2"	
Einschweißhilfe G1/2" aus Messing ESS15	SW15_ 	

Alle Marken- und Produktnamen sind Warenzeichen der Seli GmbH Automatisierungstechnik

Herausgeber:

SELI GMBH AUTOMATISIERUNGSTECHNIK, Dieselstr. 13, D-48485 Neuenkirchen

Alle Rechte, auch die der Übersetzung vorbehalten.

Der Inhalt dieser Bedienungsanleitung darf nur mit schriftlicher Genehmigung von SELI GMBH AUTOMATISIERUNGSTECHNIK reproduziert werden.

Alle technischen Angaben, Zeichnungen usw. unterliegen dem Gesetz zum Schutz des Urheberrechts. Technische Änderungen vorbehalten.

Stand 01.01.2019

Table of Contents

1	Protective measures and precautions	41
1.1	General safety instructions	.41
1.2	Intended use	.41
1.3	Hazard areas and residual hazards	.42
1.4	Equipment	.42
1.5	Personnel	.42
1.6	Disposal	.43
1./	Symbols and pictograms	.43
2	Product description	45
2.1	NIR sensor STS 03/04	.45
2.2	Functions	.46
2.3	Calibration	.48
2.4	Process integration	.49
3	Delivery	51
3.1	Scope of delivery	.51
3.2	Checking the delivery	.51
4	Installation	53
4.1	Preparing the system	.53
4.2	Mechanical connection	.53
4.3	Electrical connection	.54
5	Parameterisation	55
5.1	User menu	.55
5.2	Output current	.57
5.3	Switching points	.57
5.4	Display	.59
5.5	Keylock	.59
5.6	Reset	.60
6	Calibration by the user	61
6.1	Calibration menu	.61
6.2	Calibration using reference solutions	.62
6.3	Calibration using reference device	.64
6.4	Resetting to the factory calibration	.65
7	Maintenance	67

7.1	Important maintenance instructions	67
7.2	Checking the process connection	67
7.3	Cleaning the measuring windows	68
7.4	Maintenance schedule I Durability of sending unit (LED)	69
7.5	Disposal	69
8	Troubleshooting	71
8.1	No or erroneous measured value	71
8.2	Strongly fluctuating measured value	71
8.3	Output current does not match the measured value	72
8.4	Switching output does not switch properly	72
8.5	Keyboard cannot be operated	72
8.6	Error message on the display	73
9	Technical data	75
9.1	Standards	75
9.2	Specification	75
9.3	Dimensions	76
9.4	Ambient conditions	76
9.5	Process conditions STS	77
9.6	Order structure STS03	78
9.7	Order structure STS 04	78
10	Spare parts and accessories	79

11 Protective measures and precautions

11.1 General safety instructions

The STS sensor is designed in such a way that the product does not entail any hazards when the operating instructions are complied with.

- Please read the operating instructions first.
- Only install and operate the sensor if you have read and understood all instructions regarding the safe and proper use.
- Please keep the operating instructions so that you can refer to these at any time.
- Only operate the sensor and its accessories in an immaculate condition.
- Please additionally observe the laws, regulations, directives, and standards applicable in the country the product is used in and on the operating site.

11.2 Intended use

The STS sensor is installed in and/or on tanks or pipelines. The optical part of the sensor is submerged in the process medium in order to measure physical properties by absorbing irradiated light.

The sensor must be maintained at regular intervals.

- Establish a maintenance schedule that is aligned with your process.
- Only perform the maintenance work described in the operating instructions!
- Any modifications to the sensor must only be performed upon consultation with the manufacturer.

The manufacturer does not assume any liability for damages caused by improper or unintended use.

11.3 Hazard areas and residual hazards

The sensors are installed in and/or on tanks and pipelines that may be pressurised. Process liquid may only escape in the event of negligent conduct and improper operation.

- Before commissioning and after each maintenance activity, ensure that all gaskets and connections are complete and functional.
- Take appropriate protective measures before making contact with the sensor, because the parts may adopt the process temperature.

11.4 Equipment

Only use tested and approved accessories and equipment.

- **Gaskets** The STS 03 sensor does not require any elastomer gaskets on the process connections. In case you connect the sensor to your process by means of an adapter,
 - select the material properties of the process gaskets and the O-rings subject to the process medium and the flushing fluid.
 - take into consideration the sealing material's capacity to swell and its resistance against acids and/or alkaline solutions.

11.5 Personnel

Qualification Only trained technical personnel must install and maintain the sensor!

- **Protective clothing** The operating personnel must wear safety goggles and appropriate protective clothing during commissioning and maintenance work.
 - **OHS** Please observe the regulations and rules on occupational health and safety applicable in the country the product is used in and on the operating site!

11.6 Disposal

Please observe the regulations and rules regarding waste disposal, applicable in the country the product is used in and on the operating site.

11.7 Symbols and pictograms

Within the framework of these operating instructions, pictograms and symbols serve for the purposes of better orientation.

DANGER!	The safety precaution preceded by the signal word DANGER! indicates that you must take into account risks to life and limb and huge material damages if you do not observe the instructions.
ATTENTION!	The safety precaution preceded by the signal word ATTENTION! indicates that you must take into account material damages if you do not observe the instructions.
!!!	This identifies an important note!
$\overline{\checkmark}$	This symbol indicates that the work steps must be performed in

the sequence stated.

12 **Product description**

12.1 NIR sensor STS 03/04

Components

NIR sensor

Measuring procedure	The NIR sensor STS 03 / 04 is a 180° see-through sensor	
	measuring absorption or opacity in fluids in the near infrared	
	range (880nm wavelength).	

- Absorption In liquid media, a collimated light beam is damped by absorption and scattering. This damping can be measured in the event of a defined optical path length (transmission path) and, thus, conclusions can be drawn regarding the rayed medium, because the absorption of a fluid is directly proportional to its concentration, which is described by the Lambert-Beer law. The underlying measuring unit of absorption is AU (absorption units). One AU corresponds to a light loss of 90%, 2 AU correspond to 99%, 3 AU correspond to 99.9% and so on.
 - **Opacity** Opacity is an optical impression describing the property of intransparent media regarding the damping of light. Opacity is not an unambiguously defined or physical quantity, but a subjective impression. In order to improve the comparability, opacity measurements were calibrated using so-called reference standards (e.g. formazine). Nevertheless, the displayed measured values of

the opacity measurements strongly depend on the measuring principle, the wavelength, the measuring angle, and the optical path length.

- **STS 03** The NIR sensor STS 03 is a sensor for monitoring the optical density or opacity of fluids in order to monitor continuous process results or to securely indicate changes. In this, the measuring range is between 0...6 OD, 0...6 AU, 3250 EBC or 0...13,000FAU.
- **STS 04** Just like the STS 03, the NIR sensor STS 04 is designed for monitoring the optical density of fluids, but this sensor is used in manual or automatic quick-change fittings of the SAW family. By using quick-change fittings, the sensor can be flushed or removed with the process running, efficiently preventing corrupt results caused by coatings on the measuring windows and allowing for secure long-term monitoring of processes.
- **Measuring range** The measuring range of the STS 03/04 sensors is as follows referred to the different measuring units:

06 OD	optical density
03 AU	absorption units
03.250 EBC	European Brewery Convention
013.000 FAU	formazine absorption unit
013.000 TEF	opacity units formazine
026.650 mg/l	milligrams dry substance per litre

Display The current measured value is shown on the display in each case. With the help of the function keys, the sensor can be configured. The display can be removed allowing for the efficient prevention of any accidental changes to the settings.

12.2 Functions

Measuring principle (*NPr*) Defines the basic measuring principle of the sensor. The selection options are absorption measurement and opacity measurement.

Measuring unit	<i>Lum B</i> Defines the displayed unit of the measured value. For the absorption measurement, it is possible to select between AU (absorption unit) and a customer-defined, free measuring unit CDU (Customer Defined Unit).If you selected the opacity measurement option as measuring principle, you can select between the following measuring units:EBCEuropean Brewery ConventionFAUFormazine Absorption Unit	
	Indungseinneiten Formazin (opacity unitsformazine)MGLMilligrams per Litreand a customer-defined, free measuring unit CDU (CustomerDefined Unit).	
	In this, the following is applicable: $1 \text{ FAU} = 1 \text{ TEF} = 0.25 \text{ EBC} = 2.05 \text{mg/L}.$	
Decimal point User unit Display switchover	(сдыд) Defines the decimal point (decimal place) in the display (сды) Defines the display scope of the user unit Defines which measured value is to be displayed: (Lurb) Opacity / absorption (LENP) Temperature (RLb) Opacity / absorption and temperature alternating Regardless of the display switchover, the analogue output always delivers a signal depending on the opacity / absorption.	
Start of measuring range	(<i>n</i>-B) Defines the 4mA point for the output current. The range can be selected freely between 019999 (0.00019.999). The measuring range is set in the measuring unit currently used in each case.	
End of measuring range	(<i>n-E</i>) Defines the 20mA point for the output current. The range can be selected freely between 019999 (0.00019.999). The measuring range is set in the measuring unit currently used in each case.	
Damping	(dRn) Damps the measured value in the range of 0.0200.0 seconds both for the output current and for the display.	
Zero point range	<i>(r-0-)</i> Defines a range in display digits around the zero point where the measured value is set to 0.	

Switching-on point	(مصل) Defines the switching-on point of the switching output. The
	range can be selected freely between 019999 (0.00019.999).
Switching-off point	(doFF) Defines the switching-off point of the switching output. The range can be selected freely between 019999 (0.00019.999).
Switching function	(dtyp) Defines the switching function of the switching output. The options to select from are normally closed (NC) and normally open (NO).
Switching delay	(ddL3) Defines a switching delay of the switching output. The range can be selected freely between 0.0200.0 seconds.
Lower output limit	<i>(roLL)</i> Defines the minimum output current. The range can be selected freely between 0 22.5mA.
Upper output limit	(r oHL) Defines the maximum output current. The range can be selected freely between 0 22.5mA.
Leakage current	$(\Pi_{ou} B)$ If the transmitter detects an internal error, an error code is shown on the display and the leakage current defined at this point is generated. The leakage current can be selected freely between 0 22.5mA.
Keylock	(RuLo) Upon corresponding operating time, the keyboard is locked in order to prevent unauthorised operation. The setting range can be selected freely between 0100 minutes; if 0 is entered, the keylock is disabled.
Reset	<i>Ir-5B</i> By setting the reset function in the user menu to the option "YES", all parameters of the user menu are reset to the factory settings. The calibration values are maintained.
ESC	<i>(E5c)</i> When ultimately using the ESC function in the user menu, all changed parameters of the previous parameterisation will be stored. The calibration values are maintained.
	12.3 Calibration

The STS-03/04 opacimeter was subjected to a calibration procedure in the factory, whereby it is possible to reset the product to this configuration, even after accidental misuse. This factory calibration is performed both with absorption standards and with formazine solution. Therefore, the sensor is prepared and can directly be used both for absorption and opacity measurements.

Since the opacity is not an unambiguously defined quantity, but a subjective impression, opacimeters are calibrated with reference standards. The displayed measured values outside of the reference standards strongly depend on the measuring system, the wavelength, and the measuring angle, however. In order to improve the comparability of different measuring systems, userspecific calibration may make sense. This can be performed in the calibration menu without finally deleting the factory calibration. Reasonable calibration procedures are described in chapter 6 Calibration.

Number of
calibration points(cdEF) Defines the number of calibration points for the user-specific
calibration. You can select between at least 2 and 6 points at the
most.

Calibration points(בעוו...ה)target valuesset here.

Calibration points
actual values(cRL1...6) The actual values of the respective calibration points are
set here.

- **Save** (SRJE) The user-specific calibration is saved and accepted as soon as the "SAVE" function is set to "YES".
- **Reset** The reset function in the calibration menu can be used in order to discard the user-specific calibration and the sensor is reset to the factory calibration. However, the parameterisation in the user menu is maintained.

12.4 Process integration

Sensor The STS 03 sensor is installed into pipelines or tanks by means of his hygienic modular ½" process connections directly using a welding sleeve (e.g. BP15) or inserted into existing process connections using the corresponding process adapters. The STS 04 rod-shaped sensor is installed into a quick-change fitting (SAW) that in turn is connected to the process lines or to the tank. **Transmitter** The transmitter is supplied with 24VDC, is equipped with a freely parameterisable switching output, and a 4...20mA output for measured value output.

Process integration

PressureThe STS sensor can be used at pressures of up to 10bar and atTemperaturemaximum process temperatures of up to 90°C.

(140°C maximum for 2h (SIP cycle)

	Please observe the pressure and temperature diagrams in chapter
•••	9.5!

Installation position The sensors can basically be operated in any position. To avoid incorrect measurements, however, make sure that no air ingress or contamination can impair the measurements. Installation of the devices in a vertical line from below would be ideal here. If you pay attention to the legibility of the display, you have usually placed the device correctly. Good accessibility and operability, as well as derivation at high temperatures, is also recommended. Observing these recommendations inevitably increases the lifespan of process measuring devices. Please also see our brochure Installation conditions for measurement technology. Measuring window The measuring windows must be oriented in such a way that no air bubbles or particles may be caught between them. The measuring windows must be kept clean. This can be achieved by an appropriate CIP / SIP cleaning process or you can alternatively use the STS sensor in combination with an SAW quick-change fitting.

13 Delivery

13.1 Scope of delivery

The sensor is calibrated in the factory and is delivered ready-toinstall in a packaging providing ideal protection of the sensor.

The delivery comprises:

- STS sensor
- Protective sleeve for measuring lens (only STS 03)
- Operating instructions
- Certificate for surfaces (optional)
- Certificate for materials in contact with the medium (optional)

Store the sensor in its packaging. The packaging provides the best protection until installation.

13.2 Checking the delivery

Before approving the sensor for installation, you must ensure the following:

Packaging and device are in an immaculate condition.

The nameplate of the sensor corresponds to the specifications of the purchase order.

Should you have any queries, please directly contact the manufacturer.

14 Installation

14.1 Preparing the system

Please make sure that

there is enough working space for operating the sensor.

the process is shut down.

tanks or pipelines are depressurised, empty, and clean.

connection nozzle and process connection of the sensor are matching.

14.2 Mechanical connection

 \mathbf{N}

Risk of injuries due to escaping process fluid! Burns or chemical burns depending on the properties of the process fluid.

• Wear safety goggles and protective clothing!

Check that the tank or the pipeline the sensor is connected to is depressurised, empty, and clean!

Insert the sensor into the matching modular process connection (modular@process see also chapter 10 Spare parts and accessories).

Tighten the pressure screw (1) to a torque of maximum 10Nm.

14.3 Electrical connection

\mathbf{V}

Initially, please make sure:

that you use a genuine connecting cable IP69K with the proper VA connector.

How to connect the sensor:

Connect the cable as follows:

Pin	Colour	Denomination
1	brown	+supply (24VDC)
2	white	Switching output
3	blue	-supply
4	black	Analogue output 4-20mA
5	grey	Not used

Connect the connecting cable to the female plug of the sensor and tighten the retainer nut hand-tight.

15 Parameterisation

15.1 User menu

ATTENTION! Incorrect settings in the parameters may result in the output of incorrect measured values and switching points. This may result in accidental process influence.

 \checkmark

Please make sure that only authorised and trained personnel perform changes to the parameterisation.

The sensor is parameterised using the function keys on the display.

The user menu can be opened by pressing the Enter button. The individual parameters can be accessed by pressing the arrow buttons.

If you want to configure a parameter, you must press the Enter button again, use the arrow button to select the desired setting, and confirm your selection finally using the Enter button.

At the end of the parameters you can return to the display by pressing ESC (Escape) and the Enter button.

User menu

The **bold** and **underlined values** are the **standard user parameters**. The "*r*5^{*L*}" function resets all user parameters to the factory settings.

Para- meter	Denomination	Value range	Description
ESC	Start/end of menu	not applicable	Menu input and output
NPr	Measuring principle	בטר opacity אום ABS absorption	
unit	Selection of the	MPR = <i>88</i> 5	MPR = bur
	measuring unit	<i>Rப</i> (Au)	EBC (EBC)
		Edu (CDU)	FAU) ال
			<i>EEF</i> (TEF)
			NGL (mg/l)
			[៨០ (CDU)
Cdud	Decimal place of the user unit	00.000	Defines the decimal places of the user unit (cdu)
Cdu	User unit	019999	Defines the value range of
			the user unit (ໂຝມ)

Para-	Denomination	Value range	Description
meter		- 5-	
dSP	Display switchover	<u>њг</u> , ШПР, ALL	Definition of which measured value is to be displayed: burb : opacity/absorption EENP : temperature ALL : opacity/absorption and temperature alternating Regardless of the display
			switchover, the analogue output always delivers a signal depending on the opacity.
ПгЬ	Start of measuring range (Measuring begin)	<u>0</u> 19999	Defines the 4mA point.
NrE	End of measuring range (Measuring end)	0 19999	Defines the 20mA point.
dan	Damping (Damping)	<u>0.0</u> 200.0	Damps the measured value for opacity.
r-0-	Zero point range (Range of Zero)	<u>0</u> 1/3 Mbr.	Defines a range in display digits around the zero point where the measured value is set to 0.
don	Switching-on point (Digital Output on)	<u>0</u> 19999	Defines the switching-on point.
doFF	Switching-off point (Digital Output off)	0 <u>19999</u>	Defines the switching-off point.
dĽSP	Switching function (Digital Output type)	<u>по</u> , пс	$n \sigma =$ normally open n c = normally closed
ddLY	Switching delay (Digital Output delay)	<u>0.0</u> 200.0s	Delays the switching point by up to 200s.
RoLL	Lower output limit (Analogue Output lower limit)	<u>3,5</u> 22.5mA	Defines the minimum output current.
RouL	Upper output limit (Analogue Output upper limit)	3,5 22.5 mA	Defines the maximum output current.
ΠουΕ	Leakage current (Malfunction Output)	3,5 <u>22.5</u> mA	If the transmitter detects an internal error, an error code is shown on the display and the defined current signal is output.
RuLo	Keylock	<u>0</u> 100min.	Upon corresponding operating time, the keyboard is locked in order to prevent unauthorised operation. The setting 0 will deactivate the keylock.
rSE	Reset	<u>по</u> , УЕS	Resetting the user parameters to the default settings; the calibration values are maintained
ESC	Start/end of menu	not applicable	Menu input and output (saving the entered parameters)

15.2 Output current

The STS sensor is equipped with a 4...20mA output in order to output the absorption measured values. The output current is configured by means of the following parameters:

nrb defines the start of the measuring range and thus the 4mA point.

nrE defines the end of the measuring range and thus the 20mA point.

dfl defines the damping effecting the display and the output current.

RoLL defines the minimum output current that can be output.

Roul defines the maximum output current that can be output.

Nout defines the leakage current applied to the output current in the event of an internal error.

15.3 Switching points

The STS sensor is equipped with a PNP switching output configured by four parameters.

don defines the switching-on point and *doFF* defines the switching-off point.

Together, both parameters determine the function of the switching output:

If **don** is lower than **doFF**, the output is switched on once the measured value is between the switching points (window function).

If **don** is higher than **doFF**, the output is switched on once the measured value exceeds **don**. The product is switched off only when the measured value falls below **doFF** (hysteresis function).

If **don** equals **doFF**, the output is switched on once the measured value exceeds the switching value **don** + **doFF** and is switched off once the measured value falls below the switching value **don** + **doFF** again.

Both parameters can be set independently.

dEP inverts the function of the switching output. If the value is **no**, the switching output will work as normally open (NO) contact; if the value is **nc**, the switching output will work as normally closed (NC) contact.

ddLY delays the reaction of the switching output by up to 200.0s. This value holds true for switching on and switching off.

15.4 Display

The STS sensor is equipped with a removable display. The sensor can be parameterised using the display (optionally using the PC).

Even without the display, the sensor works as previously parameterised.

dSP defines the display value. The display can show the opacity/absorption, the temperature in °C, or both values in an alternating fashion.

15.5 Keylock

You can protect the keyboard against unauthorised access.

RuLo activates the keylock by setting a value of more than "0". The set value corresponds to the time in minutes, as of which the keyboard will be locked after the last entry was made. If another entry is made, the time will start anew. If "0" is entered, the keylock will be deactivated.

The locked keyboard can be unlocked by de-energising the sensor for a short period of time. For this, disconnect the connector for a short period of time and reconnect it afterwards.

15.6 Reset

You can reset all user parameters to factory settings.

r 5L resets all parameters to the factory settings if you change the setting value to *YES* and confirm your selection with the Enter button. The aforementioned does not affect a user calibration, because it can only be reset in the calibration menu, see chapter 6.1.

16 Calibration by the user

16.1 Calibration menu

ATTENTION! Incorrect settings in the parameters may result in the output of incorrect measured values and switching points. This may result in accidental process influence.

 \checkmark

Please make sure that only authorised and trained personnel perform changes to the calibration.

The sensor is parameterised using the function keys on the display.

Pressing the arrow $\underline{\Lambda}$ button for 4-5 seconds will open the calibration menu. If you press the arrow keys repeatedly, you can go to the individual parameters.

If you want to configure a parameter, you must press the Enter button, use the arrow key to select the required setting, and confirm your selection by using the Enter button.

At the end of the parameters you can return to the display by pressing *ESC* (Escape) and the Enter button. The "*r SE*" function resets the calibration to the factory calibration.

Para- meter	Denomination	Value range	Description
ESC	Start/end of menu	not applicable	Menu input and output
CdEF	Number of calibration points	26	Defines the number of calibration points.
כטו כטע	Calibration points: target values	019999 and/or 0,00019,999	Defines the target values of the calibration points (must be entered by the user)
cALI cAL6	Calibration points: actual values	019999 and/or 0,00019,999	Defines the actual values of the calibration points (must be entered by the user) The display alternates with the target values
SRJE	Saving the calibration	<u>no</u> , YES	Saves and/or accepts the user calibration values and overwrites the most recent calibration this way.
r5E	Reset	<u>по</u> , УЕS	Reset to factory calibration, the user parameters are

Para- meter	Denomination	Value range	Description
			maintained
ESC	Start/end of menu	not applicable	Menu input and output (saving the entered parameters)

16.2 Calibration using reference solutions

ATTENTION!Incorrect settings in the parameters may result in the output of
incorrect measured values and switching points. This may result in
accidental process influence.

 \mathbf{N}

Please make sure that only authorised and trained personnel perform changes to the calibration.

The sensor is parameterised using the function keys on the display. The operating steps can be found in chapter 6.1.

Please proceed as follows to perform a calibration using reference solutions:

- 8. Please check that the sensor is set to the required measuring principle (absorption / opacity) (see chapter 5.1).
- 9. Reset the calibration to the factory calibration (*r*5*E*, see chapter 6.4) and save the reset by selecting *SRJE* = *YES*.
- 10. Prepare a table in accordance with the following example, shown for 4 different reference solutions here.

Reference solution	known target value of the reference solutions	determined actual value of the reference solutions	
1	e.g. 250 EBC	e.g. 234EBC	
2			
3			
46			

In this, the target value describes the known value of the reference solution (e.g. manufacturer's specifications).

- 11. Please enter the known values of the reference solutions in the column **target values** of the table. The device must show these values upon calibration.
- 12. Use the sensor to consecutively measure the reference solutions and enter the actual values displayed by the sensor in the table. Avoid erroneous measurements caused by diversion by flushing and thoroughly drying the sensor between the respective measurements.
- 13. Transfer the values from the table into the sensor as follows (see chapter 6.1):
 - define the number of calibration points *LdEF*
 - enter the known target values of the calibration solutions **LJI-LJB**
 - enter thedetermined actual values of the calibration solutions CALI-CAL6
- 14. Confirm your entries by selecting *SRJE* = *YES* (chapter 6.1).

You can check the calibration by re-submerging the sensor into the reference solutions. If the sensor shows the target values, the calibration was successful.

Please make sure that the used reference solutions cover your required measuring range as far as possible.

16.3 Calibration using reference device

ATTENTION!

 \mathbf{N}

Incorrect settings in the parameters may result in the output of incorrect measured values and switching points. This may result in accidental process influence.

Please make sure that only authorised and trained personnel perform changes to the calibration.

The sensor is parameterised using the function keys on the display. The operating steps can be found in chapter 6.1.

If you want to adapt the STS sensor to a reference device during an ongoing process, please calibrate the sensor as follows using a reference device:

- 8. Please check that the sensor is set to the required measuring principle (absorption / opacity) (see chapter 5.1)
- Reset the calibration to the factory calibration (*r 5E*, see chapter 6.4) and save the reset by selecting *SRJE* = *YES*.
- 10. Prepare a table in accordance with the following sample, shown for 4 different reference measurements here.

Reference solution	Target value measured value of the reference device	Actual value measured value of the STS sensor
1	e.g. 1250 FAU	e.g. 1225 FAU
2		
3		
46		

In order to adapt the STS sensor to a reference device, any samples are used for calibration instead of ready-to-use reference solutions. These samples are measured by means of a reference device. The respective result corresponds to the target value. The measured values the STS sensor displays in the respective samples correspond to the actual values.

- 11. Please enter the measured values of the samples determined using the reference device in column **target values** of the table. The device must show these values upon calibration.
- 12. Use the STS sensor to consecutively measure the samples and enter the actual values displayed by the sensor in the table. Avoid erroneous measurements caused by diversion by flushing and thoroughly drying the sensor between the respective measurements.
- Transfer the values from the table into the sensor as follows (see chapter 6.1):
 - define the number of calibration points CdEF
 - enter the known target values of the calibration solutions *LJI-LJY*
 - enter the determined actual values of the calibration solutions **CRLI**-**CRLY**
- 14. Confirm your entries by selecting *SRJE* = *YE5* (chapter 6.1).

You can check the calibration by re-submerging the sensor into the samples. If the sensor shows the target values, the calibration was successful.

Please make sure that the used samples cover your required measuring range as far as possible.

16.4 Resetting to the factory calibration

ATTENTION!

Incorrect settings in the parameters may result in the output of incorrect measured values and switching points. This may result in accidental process influence.

 \mathbf{N}

Please make sure that only authorised and trained personnel perform changes to the calibration.

The sensor is parameterised using the function keys on the display. The operating steps can be found in chapter 6.1. Please proceed as follows if you want to reset the STS sensor to the factory calibration and delete possible user calibrations in doing so:

- 6. Press the arrow $\underline{\Lambda}$ button for 4-5 seconds. You will get access to the calibration menu.
- 7. Press the arrow $\underline{\Lambda}$ button until the display shows r5E.
- 8. Press the Enter button and use the arrow $\underline{\Lambda}$ button to select the option *yES*.
- 9. Again press the Enter button in order to confirm the resetting process.
- Press the arrow V button in order to open the *SRJE* function.
 Confirm your selection using *SRJE* = *YES* in order to save the reset to the factory calibration.

17 Maintenance

17.1 Important maintenance instructions

Please make sure that maintenance work is only performed by authorised and trained personnel.

Establish a maintenance schedule that is aligned with your process!

Always perform the maintenance work wearing suitable protective clothing.

Only perform maintenance or repair work that is described in the operating instructions!

Structural modifications must only be implemented upon consultation with the manufacturer.

Before disconnecting the sensor from the process, the pipelines or tanks must be depressurised, empty, and clean.

17.2 Checking the process connection

The pressure screw (1) holds the sensor in the process nozzle and seals the sensor.

 \mathbf{N}

Check the process connection for leakages at regular intervals.

If required, tighten the pressure screw (1) to a maximum torque of 10Nm.

WARNING!	Process fluid will escape from the process connection!
	Hazard depending on the property of the process medium!
	• Tighten the pressure screw to a torque of maximum 10Nm.

17.3 Cleaning the measuring windows

The opacity / absorption is measured using two measuring windows (sapphire) in the process. Contaminations or coatings will corrupt the measured value.

Clean the measuring windows from coatings at regular intervals.

Remove the sensor from the process connection.

Clean the measuring windows from coatings.

Risk of injuries due to escaping process fluid!

- Please wear safety goggles and protective clothing!
- Check whether tanks or pipelines the sensor is connected to are depressurised, empty, and clean!

Measuring window

Fig. 5: Measuring window on the sensor

17.4 Maintenance schedule

Please perform the maintenance work at the recommended intervals!

- **quarterly** Subject the process connection to a visual inspection for leakages.
 - Tighten the pressure screw to a torque of maximum 10Nm.
- **annually** > Remove the sensor and clean the measuring windows.

Please adapt the required maintenance intervals to your process conditions.

Maximum operating time of the transmitting unit (LED)

The maximum operating time of the transmitting unit in optical systems of the STS series depends on various application parameters.

- 1. Total duty cycle in hours
- 2. Process conditions (temperature)
- 3. Exceeding the max. temperature

The normal life of a transmitting LED is under normal process conditions at about > 100,000 hours. Lifetime can be significantly extended by turning off the unit when the output signal is not used. In addition, when exceeding the max. specified process temperature and simultaneous operation of the transmit LED is expected to reduce the service life.

17.5 Disposal

Sensor Please make sure that the sensor is free of hazardous and toxic materials. The individual components must be disposed of separately in accordance with their material.

Please observe the regulations and rules on waste disposal applicable in the country the product is used in and on the operating site.

Packaging The packaging consists of cardboard and can be disposed of together with the waste paper.

18 Troubleshooting

18.1 No or erroneous measured value

 possible cause 	▶ remedy
 No voltage at the sensor 	 Check/make electrical connection in accordance with (chapter 4.3)
 Measuring windows are coated 	 Clean the measuring windows (chapter 7.3) If the measuring windows get dirty frequently, it is better to use an STS04 with SAW8XX quick-change fitting.
 Erroneous calibration 	 Reset the calibration to factory settings in the calibration menu (chapter 6.1)

18.2 Strongly fluctuating measured value

•	possible cause	▶ remedy
•	Air bubbles in the system	 Dampen display and output current (chapter 5.2)
•	Sensor is not completely submerged in the process fluid	 Change the installation location

18.3 Output current does not match the measured value

•	possible cause	▶ remedy
•	Current output parameterised incorrectly	 Check and, if required, change the parameterisation of the current output (chapter 5.2)
•	Electrical connection incorrect	 Check/make electrical connection in accordance with (chapter 4.3)

18.4 Switching output does not switch properly

•	possible cause	▶ remedy
•	Switching output parameterised incorrectly	 Check and, if required, change the parameterisation of the switching output(chapter 5.3)
	Electrical connection incorrect	 Check/make electrical connection in accordance with (chapter 4.3)

18.5 Keyboard cannot be operated

 possible cause 	▶ remedy
 Keylock is activated 	 Unlock the keyboard (chapter 5.5)

18.6 Error message on the display

 error message 	▶ remedy
 Err0 Factory comparison failed 	▶ Repair with the manufacturer
Errl User parameters incorrect	 Use the <i>r SE</i> function in order to reset the user parameters (chapter 5.7)
• Err2 Temperature measurement failed	▶ Repair with the manufacturer
• Err3 Measuring range spreading failed	 Check the parameters "П-ь" and "П-Е". Maximum spreading 4:1
• ErrY ADC error	Repair with the manufacturer
• Erry Temperature overriding (100°C) Factory setting	Lower the temperature of the medium below 100 ° C again
19 Technical data

19.1 Standards

EN 61326-1: 10-2006 EN 61326-2-3: 5-2007 DIN/EN 27027 (ISO 7027)

19.2 Specification

Sensor specifications	
Measuring range	06 OD /03 AU /03250 EBC/013,000 FAU
Wavelength	880 nm
Light source	LED
Optical path length	5mm
Material	Stainless steel 1.4435 (316L)
Surface quality	Electropolished < Ra 0.37µm
Measuring window	Sapphire
Supply voltage	24VDC
Output current	420mA
Switching output	NO or NC parameterisable 150mA max
Degree of protection	IP67/IP69K
Cable connection	M12 connector 5-pin
Cable length	3m or 5m
Process connection	G ¹ /2" for process connections (modular@process)

19.3 Dimensions

STS04

Sensor length 225mm

19.4 Ambient conditions

Ambient temperature	- 10 - 70°C
Transport and storage temperature	- 20 - 80°C

19.5 Process conditions STS

Pressure – temperature diagram STS

19.6 Order structure STS03

	STS 03-		-		-		-		
Optical path length									
Optical path length 5mm		005							
Measuring range configuration									
Measuring range e.g. 03 AU / 03250 EBC				1					
Special design upon request				к					
Interface / parameterisation									
420 mA						Α			
Special design upon request						к			
Display / control unit									
with integrated display								1	
Special design upon request								x	

19.7 Order structure STS 04

20 Spare parts and accessories

Accessories STS 03 / 04	
Description	Order number
Connecting cable 2m	S0112-00048
Connecting cable 5m	S0112-00008
Connecting cable 10m	S0112-00013
Control display	S0552-00021

Accessories for rod-shaped sensor STS 04				
Description	Order number			
Manual quick-change fitting SAS-310	upon request			
Quick-change fitting SAW-830	upon request			
	upon request			

Certificates STS 03 / 04				
Description	Order number			
Certificate EN10204-2.2 for surface roughness (Ra<0.38µm)	2-121-01-001			
Certificate EN10204-3.1 for material	2-121-01-002			

Process connections (excerpt) STS 03 (more detailed information see datasheet modular@process)				
Description	Drawing			
Weld-in nozzle G ½" cylindrical BP15	ø30 G1/2" K			
Weld-in nozzle G ½" round AP15	ø30 G1/2" % ø35			
Process adapter Varivent F DN25-40 HP15				
Weld-in aid G1/2" made of brass ESS15	SW15 			

All brand and product names are trademarks of Seli GmbH Automatisierungstechnik

Published by:

SELI GMBH AUTOMATISIERUNGSTECHNIK, Dieselstr. 13, D-48485 Neuenkirchen, Germany

All rights reserved, also applicable to the rights of translation.

The contents of these operating instructions must only be reproduced with the written consent of Seli GMBH AUTOMATISIERUNGSTECHNIK.

All technical information, drawings, etc. are subject to the copyright law.

Subject to technical changes.

Dating from 01.01.2019

seli GmbH Automatisierungstechnik

Zentrale Dieselstraße 13 48485 Neuenkirchen Tel. (49) (0) 5973 / 9474-0 Fax (49) (0) 5973 / 9474-74 E-Mail Zentrale@seli.de Internet http://www.seli.de

